Injective modules over duo rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Injective Modules and Fp-injective Modules over Valuation Rings

It is shown that each almost maximal valuation ring R, such that every indecomposable injective R-module is countably generated, satisfies the following condition (C): each fp-injective R-module is locally injective. The converse holds if R is a domain. Moreover, it is proved that a valuation ring R that satisfies this condition (C) is almost maximal. The converse holds if Spec(R) is countable....

متن کامل

Localization of Injective Modules over Valuation Rings

It is proved that EJ is injective if E is an injective module over a valuation ring R, for each prime ideal J 6= Z. Moreover, if E or Z is flat, then EZ is injective too. It follows that localizations of injective modules over h-local Prüfer domains are injective too. If S is a multiplicative subset of a noetherian ring R, it is well known that SE is injective for each injective R-module E. The...

متن کامل

Localization of injective modules over arithmetical rings

It is proved that localizations of injective R-modules of finite Goldie dimension are injective if R is an arithmetical ring satisfying the following condition: for every maximal ideal P , RP is either coherent or not semicoherent. If, in addition, each finitely generated R-module has finite Goldie dimension, then localizations of finitely injective R-modules are finitely injective too. Moreove...

متن کامل

Superdecomposable pure injective modules over commutative Noetherian rings

We investigate width and Krull–Gabriel dimension over commutative Noetherian rings which are “tame” according to the Klingler–Levy analysis in [4], [5] and [6], in particular over Dedekind-like rings and their homomorphic images. We show that both are undefined in most cases.

متن کامل

Weak dimension of FP-injective modules over chain rings

It is proven that the weak dimension of each FP-injective module over a chain ring which is either Archimedean or not semicoherent is less or equal to 2. This implies that the projective dimension of any countably generated FP-injective module over an Archimedean chain ring is less or equal to 3. By [7, Theorem 1], for any module G over a commutative arithmetical ring R the weak dimension of G ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1972

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1972.40.695